<< Click to Display Table of Contents >> Navigation: EnviroInsite > Plan View / 3D Objects > Measured Data > Trend Test > Spearman Rank Correlation Trend Evaluation in EnviroInsite |
The Spearman Rank Correlation trend test source code in EnviroInsite is a C# adaptation of the C++ source code provided with the Numerical Recipes reference book. The Microsoft .NET code was used for sorting and the critical values of s_r for sample size of 60 and below were taken from an online source at http://www.york.ac.uk/depts/maths/tables/spearman.pdf. For sample sizes greater than 60, the student's t distribution described of the critical value was calculated as implemented in the Numerical Recipes code.
public string SpearmanRankCorrelationEval(int PercentSig, List<DateTime> dts, List<double> vals)
{
if (dts.Count <= 3 || (PercentSig == 1 && dts.Count <= 4))
return "Inconclusive";
List<double> dts_tck = new List<double>(dts.Count);
int i = 0;
foreach (DateTime dt in dts)
{
dts_tck.Add( dt.Ticks );
i++;
}
double d = 0;
double zd = 0;
double probd = 0;
double rs = 0;
double probrs = 0;
spear(ref dts_tck, ref vals, ref d, ref zd, ref probd, ref rs, ref probrs);
double dPercentSig = (double)PercentSig/100;
int n = dts.Count;
if (n > 60)
{
if (probrs < dPercentSig)
{
if (rs < 0)
return "Negative Trend";
else
return "Positive Trend";
}
else
return "Inconclusive";
}
else
{
double[] s_cr = null;
if (PercentSig == 10)
s_cr = new double[]{ -1, -1, -1, 1.0, 0.8, 0.657, 0.571, 0.524, 0.483, 0.455,
0.427, 0.406, 0.385, 0.367, 0.354, 0.341, 0.328, 0.317, 0.309, 0.299,
0.292, 0.284, 0.278, 0.271, 0.265, 0.259, 0.255, 0.250, 0.245, 0.240,
0.236, 0.232, 0.229, 0.225, 0.222, 0.219, 0.216, 0.212, 0.210, 0.207,
0.204, 0.202, 0.199, 0.197, 0.194, 0.192, 0.190, 0.188, 0.186, 0.184,
0.182, 0.180, 0.179, 0.177, 0.175, 0.174, 0.172, 0.171, 0.169, 0.168};
else if(PercentSig == 5)
s_cr = new double[]{ -1, -1, -1, 1.0, 0.90, 0.829, 0.714, 0.643, 0.600, 0.564,
0.536, 0.503, 0.484, 0.464, 0.443, 0.429, 0.414, 0.401, 0.391, 0.380,
0.370, 0.361, 0.353, 0.344, 0.337, 0.331, 0.324, 0.317, 0.312, 0.306,
0.301, 0.298, 0.291, 0.287, 0.283, 0.279, 0.275, 0.271, 0.267, 0.264,
0.261, 0.257, 0.254, 0.251, 0.248, 0.246, 0.243, 0.240, 0.238, 0.235,
0.233, 0.231, 0.228, 0.226, 0.224, 0.222, 0.220, 0.218, 0.216, 0.214};
else if (PercentSig == 1)
s_cr = new double[]{ -1, -1, -1, -1, 1.0, 0.943, 0.893, 0.833, 0.783, 0.745,
0.709, 0.671, 0.648, 0.622, 0.604, 0.582, 0.566, 0.550, 0.535, 0.520,
0.508, 0.496, 0.486, 0.476, 0.466, 0.457, 0.448, 0.440, 0.433, 0.425,
0.418, 0.412, 0.405, 0.399, 0.394, 0.388, 0.383, 0.378, 0.373, 0.368,
0.364, 0.359, 0.355, 0.351, 0.347, 0.343, 0.340, 0.336, 0.333, 0.329,
0.326, 0.323, 0.320, 0.317, 0.314, 0.311, 0.308, 0.306, 0.303, 0.301};
if ( s_cr[n-1] < 0 || Math.Abs(rs) < s_cr[n-1])
{
return "Inconclusive";
}
else
{
if (rs > 0)
return "Positive Trend";
else
return "Negative Trend";
}
}
}
void spear(ref List<double> data1, ref List<double> data2, ref double d,
ref double zd, ref double probd, ref double rs, ref double probrs)
{
/* Given two data arrays, data1[0..n-1] and data2[0..n-1], this routine returns their
sum squared difference of ranks as D, the number of standard deviations by which D
deviates from its null-hypothesis expected value as zd, the two-side p-value of this
deviation as probd, Spearmans rank correlation as rs, and the two-sided p-value of its
deviation from zero as probrs. The external routines crank and sort2 are used. A small
value of either probd or proprs indicates a significant correlation (rs positive) or
anticorrelation (rs negative)*/
double bet = 0;
int j;
int n = data1.Count;
double vard, t, fac, en3n, en, df, aved;
double sf = 0;
double sg = 0;
List<double> wksp1 = new List<double>();
List<double> wksp2 = new List<double>();
for (j = 0; j<n; j++)
{
wksp1.Add( data1[j] );
wksp2.Add( data2[j] );
}
sort2(ref wksp1, ref wksp2);
crank(ref wksp1, ref sf);
sort2(ref wksp2, ref wksp1);
crank(ref wksp2, ref sg);
d = 0;
for(j = 0; j<n; j++)
d += Math.Pow(wksp1[j]-wksp2[j],2);
en = n;
en3n = en*en*en-en;
aved = en3n / 6.0 - (sf+ sg)/12;
fac = (1.0 - sf/en3n) * (1.0-sg/en3n);
if (fac > 0.0)
{
vard = ((en - 1) * en * en * Math.Pow(en + 1, 2) / 36) * fac;
zd = (d - aved) / Math.Sqrt(vard);
probd = erfcc(Math.Abs(zd) / 1.4142136);
rs = (1 - (6 / en3n) * (d + (sf + sg) / 12)) / Math.Sqrt(fac);
fac = (rs + 1) * (1 - rs);
t = rs * Math.Sqrt((en - 2) / fac);
df = en - 2;
probrs = betai(0.5 * df, 0.5, df / (df + t * t));
}
else
{
rs = 0;
probrs = 0.0;
}
}
void crank( ref List<double> w, ref double s)
// Given a sorted array w[0..n-1], replaces the elements by their rank, including midranking
// of ties and returns as s the sum of f^3-f, where f is the number of element in each tie.
{
int j=1;
int ji, jt;
double t, rank;
int n = w.Count;
s = 0;
while(j < n)
{
if(w[j]!= w[j-1])
{
w[j-1]=j;
++j;
}
else
{
for(jt=j+1; jt <= n && w[jt-1] == w[j-1]; jt++);
rank = 0.5 * (j+jt-1);
for(ji=j; ji<=(jt-1); ji++)
w[ji-1] = rank;
t = jt - j;
s += (t*t*t-t);
j = jt;
}
}
if (j == n) w[n - 1] = n;
}
void sort2( ref List<double> arr, ref List<double> brr)
{
List<pr> prs = new List<pr>(arr.Count);
int i = 0;
foreach(double x in arr)
{
pr p = new pr();
p.x_ = x;
p.y_ = brr[i];
prs.Add(p);
i++;
}
prs.Sort();
i = 0;
foreach(pr p in prs)
{
arr[i] = p.x_;
brr[i] = p.y_;
i++;
}
}
Copyright © 2024 EarthSoft, Inc. • Modified: 15 Mar 2024