<< Click to Display Table of Contents >>

Navigation:  Professional >


Key Terminology


The EQuIS Data Qualification Module (DQM) is an EQuIS Professional module for assisting environmental professionals with data validation tasks. DQM performs automated checks on a user-selected data set loaded in the EQuIS Database. DQM has a variety of laboratory audit and standard checks to assess data for holding time, blank contamination, surrogate recovery, precision, accuracy, and reporting limits. DQM users may select existing data checks, tailor existing checks, or build tailored data checks. DQM can add and modify data quality checks within the provided framework to meet client requirements and enable project-specific rules, quality assurance/quality control (QA/QC) limits, and data qualifiers. DQM allows data comparisons to tailored or calculated criteria.


Once DQM is run, users can review any data exceptions noted by DQM and perform further assessment of the data. A summary-level report, an exceptions report by check, and a report containing all analytical results and associated qualifiers in the data set can be exported to an Excel spreadsheet.


DQM includes additional reports, an EDD format, and requires the EQuIS DQM Schema.


Key Terminology


Check – EQuIS DQM is organized around data quality checks, to which any data set may be compared. One or more checks can be selected to run against the data set at one time. A check is a group of one or more rules. There are a variety “out-of-the-box” checks available for use in DQM (see DQM Checks ), and each of the checks may be modified to desired specifications.


DQM Event – Each data validation effort is performed as a distinct event in DQM, which entails selection of analytical results data set(s) that are run through any or all of the automated checks for the selected DQM QAPP and is followed by a user review of the DQM generated flags.


Parameter – Each rule has a set of parameters. Parameters make up the elements used in each check and allow for each check to be tailored for different analytes or methods.


Qualifier – Data qualifiers are flags assigned to laboratory analytical results by the laboratory and/or the data reviewer when QA/QC criteria are not met and are intended to assist the data user to use the data appropriately in a manner consistent with project objectives. Within DQM, the qualifier is the value applied to the data set if a rule is violated. Each rule has its own qualifier, but more than one rule can have the same qualifier.


Quality Assurance Project Plan (QAPP) – A written document that provides a framework for environmental data collection, which will meet specific project objectives and includes procedures to obtain data of known and adequate quality. Basic QA/QC elements should be addressed in the QAPP, including: precision, accuracy, sensitivity, representativeness, completeness, and comparability.


Reason Code – Provides a short reference to a longer description of why that qualifier has been added to a result.


Rule – Each check has one or more individual rules that are used to compare to each result record in the data set and used to assign qualifiers.


Sample Delivery Group (SDG) – An SDG is a group of samples sent to a laboratory for analysis in a single consignment. This is distinct from a laboratory batch.